Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Diabetes Obes Metab ; 26(4): 1346-1354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240127

RESUMO

AIM: To identify the sociodemographic, clinical and laboratory determinants relating to patient adherence to liraglutide treatment among individuals with overweight or obesity. METHODS: We retrospectively analysed patients with overweight or obesity who were treated with liraglutide between 2019 and 2022. Over a 6-month follow-up period, measurements of body mass index, sociodemographic characteristics, clinical and laboratory data, and prescription records for liraglutide were collected. Treatment adherence was assessed using the proportion of days covered (PDC) measure, with a PDC ≥80% indicating high adherence. RESULTS: The study population included 1890 participants (78.1% female, mean age 46 ± 12 years). At the end of the follow-up period, 84.9% of the participants exhibited low adherence to liraglutide treatment. Adherence to treatment improved with age (p = 0.04, odds ratio [OR] 1.013, confidence interval [CI] 1.001-1.025). Significant weight loss during treatment increased the likelihood of high adherence (p < 0.001, OR 1.251, CI 1.167-1.341). Individuals with a higher socioeconomic status displayed greater adherence (p = 0.023, OR 1.906, CI 1.091-3.328). Greater adherence was also seen in non-smokers (p = 0.047, OR 0.725, CI 0.528-0.996). CONCLUSIONS: Only 15.1% of study participants exhibited high adherence to treatment (PDC ≥80%) after 6 months of follow-up. Further research is needed to explore approaches to enhance adherence to liraglutide, including strategies to educate and support patients in their efforts to achieve and maintain weight loss with the use of this drug.


Assuntos
Diabetes Mellitus Tipo 2 , Liraglutida , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Liraglutida/uso terapêutico , Sobrepeso/complicações , Sobrepeso/tratamento farmacológico , Sobrepeso/induzido quimicamente , Hipoglicemiantes/uso terapêutico , Estudos Retrospectivos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/induzido quimicamente , Redução de Peso
2.
Front Mol Neurosci ; 15: 868531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645733

RESUMO

Epilepsy is a chronic non-infectious disease of the brain, characterized primarily by recurrent unprovoked seizures, defined as an episode of disturbance of motor, sensory, autonomic, or mental functions resulting from excessive neuronal discharge. Despite the advances in the treatment achieved with the use of antiepileptic drugs and other non-pharmacological therapies, about 30% of patients suffer from uncontrolled seizures. This review summarizes the currently available methods of gene and cell therapy for epilepsy and discusses the development of these approaches. Currently, gene therapy for epilepsy is predominantly adeno-associated virus (AAV)-mediated delivery of genes encoding neuro-modulatory peptides, neurotrophic factors, enzymes, and potassium channels. Cell therapy for epilepsy is represented by the transplantation of several types of cells such as mesenchymal stem cells (MSCs), bone marrow mononuclear cells, neural stem cells, and MSC-derived exosomes. Another approach is encapsulated cell biodelivery, which is the transplantation of genetically modified cells placed in capsules and secreting various therapeutic agents. The use of gene and cell therapy approaches can significantly improve the condition of patient with epilepsy. Therefore, preclinical, and clinical studies have been actively conducted in recent years to prove the benefits and safety of these strategies.

3.
Epilepsia ; 63(8): 1970-1980, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35592948

RESUMO

OBJECTIVE: Family members carrying the same SCN1A variant often exhibit differences in the clinical severity of epilepsy. This variable expressivity suggests that other factors aside from the primary sodium channel variant influence the clinical manifestation. However, identifying such factors has proven challenging in humans. METHODS: We perform whole exome sequencing (WES) in a large family in which an SCN1A variant (p.K1372E) is segregating that is associated with a broad spectrum of phenotypes ranging from lack of epilepsy, to febrile seizures and absence seizures, to Dravet syndrome. We assessed the hypothesis that the severity of the SCN1A-related phenotype was affected by alternate alleles at a modifier locus (or loci). RESULTS: One of our top candidates identified by WES was a second variant in the SCN1A gene (p.L375S) that was shared exclusively by unaffected carriers of the K1372E allele. To test the hypothesized that L375S variant nullifies the loss-of-function effect of K1372E, we transiently expressed Nav1.1 carrying the two variants in HEK293T cells and compared their biophysical properties with the wild-type (WT) variant, and then co-expressed WT with K1372E or L375S with K1372E in equal quantity and tested the functional consequence. The data demonstrated that co-expression of the L375S and K1372E alleles reversed the loss-of-function property brought by the K1372E variant, whereas WT-K1372E co-expression remained partial loss-of-function. SIGNIFICANCE: These results support the hypothesis that L375S counteracts the loss-of-function effect of K1372E such that individuals carrying both alleles in trans do not present epilepsy-related symptoms. We demonstrate that monogenic epilepsies with wide expressivity can be modified by additional variants in the disease gene, providing a novel framework for the gene-phenotype relationship in genetic epilepsies.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Convulsões Febris , Epilepsias Mioclônicas/genética , Epilepsia/complicações , Epilepsia/genética , Células HEK293 , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Convulsões Febris/complicações , Convulsões Febris/genética , Virulência , Sequenciamento do Exoma
4.
Eur J Gen Pract ; 28(1): 102-108, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35579223

RESUMO

BACKGROUND: Hepatitis C Virus (HCV) is a common cause of chronic liver disease and its ensuing complications. In the last years, there has been a revolution of the treatment for patients with HCV regarding efficacy, simplicity, safety and duration of treatment. The role of the family physician is vital in all steps of care: screening, diagnosis, linkage to treatment, treatment and follow-up. OBJECTIVES: This review aims to summarise the family physician and the important updated recommendations for diagnosis and treatment of patients with chronic HCV. METHODS: The updated recommendations were reviewed and summarised in a short and simple review. RESULTS: Patients with any risk factor for HCV should first be screened for HCV antibodies. In the case of positive antibodies, reflex testing for RNA polymerase chain reaction (PCR) should be done without waiting for genotype. For patients with positive PCR, fibrosis assessment should be conducted using laboratory panels (Fibrosis-4 index (FIB-4) or aspartate aminotransferase to platelet ratio index (APRI)); if advanced fibrosis is suspected, additional non-invasive fibrosis assessment is needed, such as fibrotest or liver elastography. Naïve non-cirrhotic or compensated cirrhosis (Child-Pugh-Score A) could be treated with pangenotypic drugs, Glecaprevir/pibrentasvir (Maviret) for eight weeks, or Sofosbuvir/velpatasvir (Epclusa) for 12 weeks. CONCLUSION: Patients without advanced fibrosis and comorbidities can be treated by the educated family physician. However, patients with comorbidities, cirrhosis or coinfection (HIV, Hepatitis B Virus (HBV)) should be referred to the liver clinic. In case of screening patients with risk factors or likelihood of dormant HCV, health organisations should provide the appropriate resources, logistics, finances and workforce.


Assuntos
Hepatite C Crônica , Hepatite C , Ácidos Aminoisobutíricos/uso terapêutico , Antivirais/uso terapêutico , Ciclopropanos/uso terapêutico , Hepacivirus/genética , Hepatite C Crônica/complicações , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/tratamento farmacológico , Humanos , Lactamas Macrocíclicas/uso terapêutico , Leucina/uso terapêutico , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Cirrose Hepática/tratamento farmacológico
5.
Am J Hum Genet ; 108(4): 722-738, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798445

RESUMO

Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.


Assuntos
Dolicóis/metabolismo , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Feminino , Glicosilação , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Epilepsias Mioclônicas Progressivas/classificação , Sequenciamento do Exoma , Adulto Jovem
6.
Genet Med ; 23(2): 363-373, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33144681

RESUMO

PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. CONCLUSION: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.


Assuntos
Transtorno do Espectro Autista , Encefalopatias , Epilepsia , Transtorno do Espectro Autista/genética , Encefalopatias/genética , Epilepsia/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Masculino , Proteínas do Tecido Nervoso , Convulsões/genética
7.
Ann Clin Transl Neurol ; 7(8): 1429-1435, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32666661

RESUMO

Febrile infection-related epilepsy syndrome (FIRES) is a devastating epilepsy characterized by new-onset refractory status epilepticus with a prior febrile infection. We performed exome sequencing in 50 individuals with FIRES, including 27 patient-parent trios and 23 single probands, none of whom had pathogenic variants in established genes for epilepsies or neurodevelopmental disorders. We also performed HLA sequencing in 29 individuals with FIRES and 529 controls, which failed to identify prominent HLA alleles. The genetic architecture of FIRES is substantially different from other developmental and epileptic encephalopathies, and the underlying etiology remains elusive, requiring novel approaches to identify the underlying causative factors.


Assuntos
Doenças Transmissíveis/complicações , Síndromes Epilépticas/etiologia , Síndromes Epilépticas/genética , Febre/complicações , Antígenos HLA/genética , Análise de Sequência de DNA , Adolescente , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/genética , Feminino , Humanos , Masculino , Estado Epiléptico/etiologia , Estado Epiléptico/genética , Sequenciamento do Exoma
8.
Epilepsy Behav ; 103(Pt A): 106839, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932179

RESUMO

Lafora disease (LD) is both a fatal childhood epilepsy and a glycogen storage disease caused by recessive mutations in either the Epilepsy progressive myoclonus 2A (EPM2A) or EPM2B genes. Hallmarks of LD are aberrant, cytoplasmic carbohydrate aggregates called Lafora bodies (LBs) that are a disease driver. The 5th International Lafora Epilepsy Workshop was recently held in Alcala de Henares, Spain. The workshop brought together nearly 100 clinicians, academic and industry scientists, trainees, National Institutes of Health (NIH) representation, and friends and family members of patients with LD. The workshop covered aspects of LD ranging from defining basic scientific mechanisms to elucidating a LD therapy or cure and a recently launched LD natural history study.


Assuntos
Congressos como Assunto/tendências , Educação/tendências , Internacionalidade , Doença de Lafora/terapia , Animais , Humanos , Doença de Lafora/epidemiologia , Doença de Lafora/genética , Mutação/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Espanha/epidemiologia
9.
Nat Commun ; 10(1): 4920, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664034

RESUMO

Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures. Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5 and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first intron of STARD7. The ATTTC expansions segregate in 158/158 individuals typically affected by FAME from 22 pedigrees including 16 previously reported families recruited worldwide. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in combination with other genes bearing similar mutations that have been implicated in FAME, suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus involved.


Assuntos
Proteínas de Transporte/genética , Cromossomos Humanos Par 2/genética , Expansão das Repetições de DNA , Epilepsias Mioclônicas/genética , Íntrons , Adolescente , Adulto , Criança , Pré-Escolar , Mapeamento Cromossômico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
10.
Epilepsia ; 60(6): e67-e73, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31111464

RESUMO

Despite tremendous progress through next generation sequencing technologies, familial focal epilepsies are insufficiently understood. We sought to identify the genetic basis in multiplex Palestinian families with familial focal epilepsy with variable foci (FFEVF). Family I with 10 affected individuals and Family II with five affected individuals underwent detailed phenotyping over three generations. The phenotypic spectrum of the two families varied from nonlesional focal epilepsy including nocturnal frontal lobe epilepsy to severe structural epilepsy due to hemimegalencephaly. Whole-exome sequencing and single nucleotide polymorphism array analysis revealed pathogenic variants in NPRL3 in each family, a partial ~38-kb deletion encompassing eight exons (exons 8-15) and the 3'-untranslated region of the NPRL3 gene in Family I, and a de novo nonsense variant c.1063C>T, p.Gln355* in Family II. Furthermore, we identified a truncating variant in the PDCD10 gene in addition to the NPRL3 variant in a patient with focal epilepsy from Family I. The individual also had developmental delay and multiple cerebral cavernomas, possibly demonstrating a digenic contribution to the individual's phenotype. Our results implicate the association of NPRL3 with hemimegalencephaly, expanding the phenotypic spectrum of NPRL3 in FFEVF and underlining that partial deletions are part of the genotypic spectrum of NPRL3 variants.


Assuntos
Epilepsias Parciais/complicações , Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Megalencefalia/etiologia , Megalencefalia/genética , Adolescente , Adulto , Idade de Início , Proteínas Reguladoras de Apoptose/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/genética , Epilepsia do Lobo Frontal/complicações , Epilepsia do Lobo Frontal/genética , Exoma/genética , Família , Feminino , Deleção de Genes , Variação Genética , Genótipo , Humanos , Lactente , Masculino , Proteínas de Membrana/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética
11.
Neurol Genet ; 4(2): e223, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29577077

RESUMO

OBJECTIVE: To identify the clinical characteristics and genetic etiology of a family affected with hereditary spastic paraplegia (HSP). METHODS: Clinical, genetic, and functional analyses involving genome-wide linkage coupled to whole-exome sequencing in a consanguineous family with complicated HSP. RESULTS: A homozygous missense mutation was identified in the ACO2 gene (c.1240T>G p.Phe414Val) that segregated with HSP complicated by intellectual disability and microcephaly. Lymphoblastoid cell lines of homozygous carrier patients revealed significantly decreased activity of the mitochondrial aconitase enzyme and defective mitochondrial respiration. ACO2 encodes mitochondrial aconitase, an essential enzyme in the Krebs cycle. Recessive mutations in this gene have been previously associated with cerebellar ataxia. CONCLUSIONS: Our findings nominate ACO2 as a disease-causing gene for autosomal recessive complicated HSP and provide further support for the central role of mitochondrial defects in the pathogenesis of HSP.

12.
J Mol Neurosci ; 63(2): 216-222, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28913705

RESUMO

Early-onset Parkinson's disease (EOPD) is less common than the typical adult-onset PD and may be associated with a genetic etiology. Mutations in several genes are known to cause autosomal recessive (AR) PD. This study aimed to detect the etiology of EOPD in consanguineous families or families living in a specific small geographic region in Israel. Six families with EOPD affecting more than a single individual were recruited. Homozygous mapping analysis using a single-nucleotide polymorphism-based array was performed in all families, followed by Sanger sequencing of related genes based on the mapping results. In addition, all families underwent PARK2 sequencing and testing for large deletions and duplications in PD-associated genes. Different truncating mutations were detected in the PARK2 gene among affected individuals of three families: c.996C>A (p.Cys332X) and c.101delA in either homozygous or compound heterozygous fashion. Exon 4 deletion was detected in a heterozygous manner in a late-onset PD and in homozygous state in early-onset disease in the same family. No disease-causing mutations were detected in any other tested genes. In total, mutations in the PARK2 gene were detected in four of the six tested families with a history of EOPD. These results further demonstrate the role of PARK2 in AR PD. We recommend genetic analysis for the PARK2 gene when AR PD is suspected.


Assuntos
Mutação , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Idade de Início , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Doença de Parkinson/patologia , Linhagem
13.
JAMA Neurol ; 74(10): 1228-1236, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28806457

RESUMO

Importance: Knowing the range of symptoms seen in patients with a missense or loss-of-function variant in KCNB1 and how these symptoms correlate with the type of variant will help clinicians with diagnosis and prognosis when treating new patients. Objectives: To investigate the clinical spectrum associated with KCNB1 variants and the genotype-phenotype correlations. Design, Setting, and Participants: This study summarized the clinical and genetic information of patients with a presumed pathogenic variant in KCNB1. Patients were identified in research projects or during clinical testing. Information on patients from previously published articles was collected and authors contacted if feasible. All patients were seen at a clinic at one of the participating institutes because of presumed genetic disorder. They were tested in a clinical setting or included in a research project. Main Outcomes and Measures: The genetic variant and its inheritance and information on the patient's symptoms and characteristics in a predefined format. All variants were identified with massive parallel sequencing and confirmed with Sanger sequencing in the patient. Absence of the variant in the parents could be confirmed with Sanger sequencing in all families except one. Results: Of 26 patients (10 female, 15 male, 1 unknown; mean age at inclusion, 9.8 years; age range, 2-32 years) with developmental delay, 20 (77%) carried a missense variant in the ion channel domain of KCNB1, with a concentration of variants in region S5 to S6. Three variants that led to premature stops were located in the C-terminal and 3 in the ion channel domain. Twenty-one of 25 patients (84%) had seizures, with 9 patients (36%) starting with epileptic spasms between 3 and 18 months of age. All patients had developmental delay, with 17 (65%) experiencing severe developmental delay; 14 (82%) with severe delay had behavioral problems. The developmental delay was milder in 4 of 6 patients with stop variants and in a patient with a variant in the S2 transmembrane element rather than the S4 to S6 region. Conclusions and Relevance: De novo KCNB1 missense variants in the ion channel domain and loss-of-function variants in this domain and the C-terminal likely cause neurodevelopmental disorders with or without seizures. Patients with presumed pathogenic variants in KCNB1 have a variable phenotype. However, the type and position of the variants in the protein are (imperfectly) correlated with the severity of the disorder.


Assuntos
Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Canais de Potássio Shab/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Fenótipo , Adulto Jovem
14.
Neurology ; 89(12): 1210-1219, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28842445

RESUMO

OBJECTIVE: Following our original description of generalized epilepsy with febrile seizures plus (GEFS+) in 1997, we analyze the phenotypic spectrum in 409 affected individuals in 60 families (31 new families) and expand the GEFS+ spectrum. METHODS: We performed detailed electroclinical phenotyping on all available affected family members. Genetic analysis of known GEFS+ genes was carried out where possible. We compared our phenotypic and genetic data to those published in the literature over the last 19 years. RESULTS: We identified new phenotypes within the GEFS+ spectrum: focal seizures without preceding febrile seizures (16/409 [4%]), classic genetic generalized epilepsies (22/409 [5%]), and afebrile generalized tonic-clonic seizures (9/409 [2%]). Febrile seizures remains the most frequent phenotype in GEFS+ (178/409 [44%]), followed by febrile seizures plus (111/409 [27%]). One third (50/163 [31%]) of GEFS+ families tested have a pathogenic variant in a known GEFS+ gene. CONCLUSION: As 37/409 (9%) affected individuals have focal epilepsies, we suggest that GEFS+ be renamed genetic epilepsy with febrile seizures plus rather than generalized epilepsy with febrile seizures plus. The phenotypic overlap between GEFS+ and the classic generalized epilepsies is considerably greater than first thought. The clinical and molecular data suggest that the 2 major groups of generalized epilepsies share genetic determinants.


Assuntos
Epilepsias Parciais/fisiopatologia , Epilepsia Generalizada/fisiopatologia , Convulsões Febris/fisiopatologia , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Epilepsias Parciais/genética , Epilepsia Generalizada/genética , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Convulsões Febris/genética , Adulto Jovem
15.
J Neurol ; 264(7): 1421-1425, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28620718

RESUMO

Mutations or structural genomic alterations of the X-chromosomal gene ARHGEF9 have been described in male and female patients with intellectual disability. Hyperekplexia and epilepsy were observed to a variable degree, but incompletely described. Here, we expand the phenotypic spectrum of ARHGEF9 by describing a large Ethiopian-Jewish family with epilepsy and intellectual disability. The four affected male siblings, their unaffected parents and two unaffected female siblings were recruited and phenotyped. Parametric linkage analysis was performed using SNP microarrays. Variants from exome sequencing in two affected individuals were confirmed by Sanger sequencing. All affected male siblings had febrile seizures from age 2-3 years and intellectual disability. Three developed afebrile seizures between age 7-17 years. Three showed focal seizure semiology. None had hyperekplexia. A novel ARHGEF9 variant (c.967G>A, p.G323R, NM_015185.2) was hemizygous in all affected male siblings and heterozygous in the mother. This family reveals that the phenotypic spectrum of ARHGEF9 is broader than commonly assumed and includes febrile seizures and focal epilepsy with intellectual disability in the absence of hyperekplexia or other clinically distinguishing features. Our findings suggest that pathogenic variants in ARHGEF9 may be more common than previously assumed in patients with intellectual disability and mild epilepsy.


Assuntos
Epilepsias Parciais/genética , Deficiência Intelectual/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Convulsões Febris/genética , Adolescente , Adulto , Família , Feminino , Humanos , Masculino , Fenótipo , Adulto Jovem
16.
Ann Neurol ; 81(5): 677-689, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28380698

RESUMO

OBJECTIVE: To comprehensively describe the new syndrome of myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK), including cellular electrophysiological characterization of observed clinical improvement with fever. METHODS: We analyzed clinical, electroclinical, and neuroimaging data for 20 patients with MEAK due to recurrent KCNC1 p.R320H mutation. In vitro electrophysiological studies were conducted using whole cell patch-clamp to explore biophysical properties of wild-type and mutant KV 3.1 channels. RESULTS: Symptoms began at between 3 and 15 years of age (median = 9.5), with progressively severe myoclonus and rare tonic-clonic seizures. Ataxia was present early, but quickly became overshadowed by myoclonus; 10 patients were wheelchair-bound by their late teenage years. Mild cognitive decline occurred in half. Early death was not observed. Electroencephalogram (EEG) showed generalized spike and polyspike wave discharges, with documented photosensitivity in most. Polygraphic EEG-electromyographic studies demonstrated a cortical origin for myoclonus and striking coactivation of agonist and antagonist muscles. Magnetic resonance imaging revealed symmetrical cerebellar atrophy, which appeared progressive, and a prominent corpus callosum. Unexpectedly, transient clinical improvement with fever was noted in 6 patients. To explore this, we performed high-temperature in vitro recordings. At elevated temperatures, there was a robust leftward shift in activation of wild-type KV 3.1, increasing channel availability. INTERPRETATION: MEAK has a relatively homogeneous presentation, resembling Unverricht-Lundborg disease, despite the genetic and biological basis being quite different. A remarkable improvement with fever may be explained by the temperature-dependent leftward shift in activation of wild-type KV 3.1 subunit-containing channels, which would counter the loss of function observed for mutant channels, highlighting KCNC1 as a potential target for precision therapeutics. Ann Neurol 2017;81:677-689.


Assuntos
Ataxia , Disfunção Cognitiva/etiologia , Epilepsias Mioclônicas , Temperatura Alta , Canais de Potássio Shaw/metabolismo , Adolescente , Adulto , Idade de Início , Ataxia/complicações , Ataxia/diagnóstico por imagem , Ataxia/genética , Ataxia/fisiopatologia , Eletroencefalografia , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Feminino , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Canais de Potássio Shaw/genética , Síndrome , Adulto Jovem
17.
Epilepsy Res ; 131: 9-14, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28192756

RESUMO

INTRODUCTION: Amongst autosomal dominant genetic epilepsy with febrile seizures plus (GEFS+) families, SCN1A variants are the most common genetic cause. Initially regarded as a generalized form of epilepsy, the GEFS+ spectrum is now known to include some focal epilepsies, but it is generally not conceptualized as extending to the self-limited focal epilepsies of childhood, such as Panayiotopoulos syndrome. There are, however, three reports of SCN1A variants in Panayiotopoulos syndrome. We describe the variable clinical phenotypes that include the self-limited focal epilepsies of childhood, present in a large GEFS+ family, segregating a heterozygous SCN1A missense variant. MATERIAL AND METHODS: Electro-clinical details on all putatively affected family members were sought and blood samples were taken for genetic analysis. Two individuals were chosen for SCN1A testing. All 26 exons and exon-intron junctions were amplified, sequenced and analyzed. This was followed by pedigree segregation analysis of the variant identified. RESULTS: A pathogenic heterozygous SCN1A (c.2624C>A; p.Thr875Lys) variant was identified. Sixteen of the 18 variant positive family members were affected (88% penetrance): 8 with febrile seizures, 2 febrile seizures plus, 1 unclassified seizures and 5 with self-limited focal epilepsy of childhood. Of these, one was diagnosed with atypical childhood epilepsy with centrotemporal spikes and four with Panayiotopoulos syndrome. DISCUSSION: By characterizing the heterogeneous clinical phenotypes in a large, SCN1A mutation positive GEFS+ family, we conclude that the GEFS+ spectrum can extend to the self-limited focal epilepsies of childhood, including Panayiotopoulos syndrome, and in turn highlight the complex genotype-phenotype correlations associated with SCN1A-related epilepsies.


Assuntos
Epilepsias Parciais/diagnóstico , Epilepsias Parciais/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Adolescente , Criança , Pré-Escolar , Feminino , Variação Genética/genética , Humanos , Lactente , Masculino , Linhagem , Adulto Jovem
18.
Epilepsia ; 58(3): e40-e43, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28098945

RESUMO

Synaptic proteins are critical to neuronal function in the brain, and their deficiency can lead to seizures and cognitive impairments. CNKSR2 (connector enhancer of KSR2) is a synaptic protein involved in Ras signaling-mediated neuronal proliferation, migration and differentiation. Mutations in the X-linked gene CNKSR2 have been described in patients with seizures and neurodevelopmental deficits, especially those affecting language. In this study, we sequenced 112 patients with phenotypes within the epilepsy-aphasia spectrum (EAS) to determine the frequency of CNKSR2 mutation within this complex set of disorders. We detected a novel nonsense mutation (c.2314 C>T; p.Arg712*) in one Ashkenazi Jewish family, the male proband of which had a severe epileptic encephalopathy with continuous spike-waves in sleep (ECSWS). His affected brother also had ECSWS with better outcome, whereas the sister had childhood epilepsy with centrotemporal spikes. This mutation segregated in the three affected siblings in an X-linked manner, inherited from their mother who had febrile seizures. Although the frequency of point mutation is low, CNKSR2 sequencing should be considered in families with suspected X-linked EAS because of the specific genetic counseling implications.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Afasia/genética , Mutação/genética , Espasmos Infantis/genética , Afasia/fisiopatologia , Estudos de Coortes , Análise Mutacional de DNA , Eletroencefalografia , Saúde da Família , Feminino , Humanos , Lactente , Masculino , Fenótipo , Sono/fisiologia , Espasmos Infantis/fisiopatologia
19.
Epilepsia ; 58(2): e26-e30, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28084635

RESUMO

Genetic epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome characterized by heterogeneous phenotypes ranging from mild disorders such as febrile seizures to epileptic encephalopathies (EEs) such as Dravet syndrome (DS). Although DS often occurs with de novo SCN1A pathogenic variants, milder GEFS+ spectrum phenotypes are associated with inherited pathogenic variants. We identified seven cases with non-EE GEFS+ phenotypes and de novo SCN1A pathogenic variants, including a monozygotic twin pair. Febrile seizures plus (FS+) occurred in six patients, five of whom had additional seizure types. The remaining case had childhood-onset temporal lobe epilepsy without known febrile seizures. Although early development was normal in all individuals, three later had learning difficulties, and the twin girls had language impairment and working memory deficits. All cases had SCN1A missense pathogenic variants that were not found in either parent. One pathogenic variant had been reported previously in a case of DS, and the remainder were novel. Our finding of de novo pathogenic variants in mild phenotypes within the GEFS+ spectrum shows that mild GEFS+ is not always inherited. SCN1A screening should be considered in patients with GEFS+ phenotypes because identification of pathogenic variants will influence antiepileptic therapy, and prognostic and genetic counseling.


Assuntos
Epilepsias Mioclônicas/genética , Saúde da Família , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões Febris/genética , Adolescente , Adulto , Criança , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Adulto Jovem
20.
Mol Genet Genomic Med ; 4(5): 568-80, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27652284

RESUMO

BACKGROUND: Many genes are candidates for involvement in epileptic encephalopathy (EE) because one or a few possibly pathogenic variants have been found in patients, but insufficient genetic or functional evidence exists for a definite annotation. METHODS: To increase the number of validated EE genes, we sequenced 26 known and 351 candidate genes for EE in 360 patients. Variants in 25 genes known to be involved in EE or related phenotypes were followed up in 41 patients. We prioritized the candidate genes, and followed up 31 variants in this prioritized subset of candidate genes. RESULTS: Twenty-nine genotypes in known genes for EE (19) or related diseases (10), dominant as well as recessive or X-linked, were classified as likely pathogenic variants. Among those, likely pathogenic de novo variants were found in EE genes that act dominantly, including the recently identified genes EEF1A2, KCNB1 and the X-linked gene IQSEC2. A de novo frameshift variant in candidate gene HNRNPU was the only de novo variant found among the followed-up candidate genes, and the patient's phenotype was similar to a few recent publications. CONCLUSION: Mutations in genes described in OMIM as, for example, intellectual disability gene can lead to phenotypes that get classified as EE in the clinic. We confirmed existing literature reports that de novo loss-of-function HNRNPUmutations lead to severe developmental delay and febrile seizures in the first year of life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...